2023 3rd International Conference on Applied Mathematics, Modelling and Intelligent Computing (CAMMIC 2023)
Prof. Witold Pedrycz


Prof. Witold Pedrycz

Department of Electrical & Computer Engineering

University of Alberta, Edmonton, Canada

Speech Title: Frontiers of Machine Learning: Technology and Society 


Over the recent years, we have been witnessing spectacular achievements of Artificial Intelligence and Machine Learning (ML), in particular. We have seen highly visible accomplishments encountered in natural language processing and computer vision impacting numerous areas of human endeavours. Being driven inherently by the technologically advanced learning and architectural developments, ML constructs are highly impactful coming with far reaching consequences; just to mention autonomous vehicles, health care imaging, decision-making processes in critical areas, among others. 


We advocate that the design and analysis of ML constructs have to be carried out in a holistic manner by identifying and addressing a series of central and unavoidable societal quests. The key challenges on the list of interest concerns interpretability, energy awareness (being also lucidly identified on the agenda of green AI), efficient quantification of quality of ML constructs, their brittleness and conceptual stability coming hand in hand with the varying levels of abstraction. The credibility of ML models is also of concern to the society. The above stated quests are highly intertwined and exhibit relationships with the technological end of ML. As such, they deserve prudent attention, in particular when a multicriterial facet of the problem is considered.


The talk elaborates on the above challenges, offers definitions and identifies the linkages among them. In the pursuit of coping with such challenges, we advocate that Granular Computing can play a pivotal role offering a conceptual environment and realizing algorithmic development. As a detailed study, we discuss the ideas of knowledge transfer showing how a thoughtful and prudently arranged knowledge reuse to support energy-aware ML computing. We discuss passive and active modes of knowledge transfer. In both modes, the essential role of information granularity is identified. In the passive approach, information granularity serves as a vehicle to quantify the credibility of the transferred knowledge. In the active approach, a new model is constructed in the target domain whereas the design is guided by the loss function, which involves granular regularization produced by the granular model transferred from the source domain. A generalized scenario of multi-source domains is discussed. Knowledge distillation leading to model compression is also studied in the context of transfer learning. The aspects of interpretability, credibility, and brittleness are identified and possible solutions with this regard are discussed. 


Witold Pedrycz (IEEE Life Fellow) is Professor in the Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada. He is also with the Systems Research Institute of the Polish Academy of Sciences, Warsaw, Poland. Dr. Pedrycz is a foreign member of the Polish Academy of Sciences and a Fellow of the Royal Society of Canada. He is a recipient of  several awards including Norbert Wiener award from the IEEE Systems, Man, and Cybernetics Society, IEEE Canada Computer Engineering Medal, a Cajastur Prize for Soft Computing from the European Centre for Soft Computing, a Killam Prize, a Fuzzy Pioneer Award from the IEEE Computational Intelligence Society, and 2019 Meritorious Service Award from the IEEE Systems Man and Cybernetics Society.

His main research directions involve Computational Intelligence, Granular Computing, and Machine Learning, among others.

Professor Pedrycz serves as an Editor-in-Chief of Information Sciences, Editor-in-Chief of WIREs Data Mining and Knowledge Discovery (Wiley), and Co-editor-in-Chief of Int. J. of Granular Computing (Springer) and J. of Data Information and Management (Springer).